Refractive index measurement of acute rat brain tissue slices using optical coherence tomography

نویسندگان

  • Jingjing Sun
  • Sung Jin Lee
  • Lei Wu
  • Malisa Sarntinoranont
  • Huikai Xie
چکیده

An optical coherence tomography (OCT) system employing a microelectromechanical system (MEMS) mirror was used to measure the refractive index (RI) of anatomically different regions in acute brain tissue slices, in which viability was maintained. RI was measured in white-matter and grey-matter regions, including the cerebral cortex, putamen, hippocampus, thalamus and corpus callosum. The RI in the corpus callosum was found to be ~4% higher than the RIs in other regions. Changes in RI with tissue deformation were also measured in the cerebral cortex and corpus callosum under uniform compression (20-80% strain). For 80% strain, measured RIs increased nonlinearly by up to 70% and 90% in the cerebral cortex and corpus callosum respectively. Knowledge of RI in heterogeneous tissues can be used to correct distorted optical images caused by RI variations between different regions. Also deformation-dependent changes in RI can be applied to OCT elastography or to mechanical tests based on optical imaging such as indentation tests.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اندازه‌گیری همزمان ضریب شکست و ضخامت فیزیکی دستگاه‌های چندلایه‌ای با استفاده از نتایج مقطع‌نگاری همدوسی اپتیکی در فضای فوریه

In fourier domain optical coherence tomography, we can measure the optical thickness ( refractive index n times thickness d), to obtain the retinal layers in order to diagnose many disorders. In this work, we introduce a new method for measurement of refractive index and physical thickness of multiple layers simultaneously by Fourier domain optical coherence tomography, without additional infor...

متن کامل

Experimental Visualization of Labyrinthine Structure with Optical Coherence Tomography

Introduction:Visualization of inner ear structures is a valuable strategy for researchers and clinicians working on hearing pathologies. Optical coherence tomography (OCT) is a high-resolution imaging technology which may be used for the visualization of tissues. In this experimental study we aimed to evaluate inner ear anatomy in well-prepared human labyrinthine bones.Materials and Methods:Thr...

متن کامل

Needle-based refractive index measurement using low-coherence interferometry.

We present a novel needle-based device for the measurement of refractive index and scattering using low-coherence interferometry. Coupled to the sample arm of an optical coherence tomography system, the device detects the scattering response of, and optical path length through, a sample residing in a fixed-width channel. We report use of the device to make near-infrared measurements of tissues ...

متن کامل

Measurement and comparison of the temperature-dependence of refractive index of water and Plexiglas phantoms by interferometry method for their use in optical calorimetry

In radiation calorimetry by using laser beams and interferometry setups, variations induced by dose absorption in phantom can be precisely measured. Dose absorption and the induced temperature change result in refractive index variation of the material. In order to be able to measure the low amount of absorbed dose in the phantom, temperature dependence of refractive index of the material must ...

متن کامل

Refractive index tomography of turbid media by bifocal optical coherence refractometry.

We demonstrate tomographic imaging of the refractive index of turbid media using bifocal optical coherence refractometry (BOCR). The technique, which is a variant of optical coherence tomography, is based on the measurement of the optical pathlength difference between two foci simultaneously present in a medium of interest. We describe a new method to axially shift the bifocal optical pathlengt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2012